On the use of the bootstrap for estimating functions with functional data
نویسندگان
چکیده
The bootstrap methodology for functional data and functional estimation target is considered. A Monte Carlo study analyzing the performance of the bootstrap confidence bands (obtained with different resampling methods) of several functional estimators is presented. Some of these estimators (e.g., the trimmed functional mean) rely on the use of depth notions for functional data and do not have received yet much attention in the literature. A real data example in cardiology research is also analyzed. In a more theoretical aspect, a brief discussion is given providing some insights on the asymptotic validity of the bootstrap methodology when functional data, as well as a functional parameter, are involved. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Functional Analysis of Iranian Temperature and Precipitation by Using Functional Principal Components Analysis
Extended Abstract. When data are in the form of continuous functions, they may challenge classical methods of data analysis based on arguments in finite dimensional spaces, and therefore need theoretical justification. Infinite dimensionality of spaces that data belong to, leads to major statistical methodologies and new insights for analyzing them, which is called functional data analysis (FDA...
متن کاملA Bootstrap Interval Robust Data Envelopment Analysis for Estimate Efficiency and Ranking Hospitals
Data envelopment analysis (DEA) is one of non-parametric methods for evaluating efficiency of each unit. Limited resources in healthcare economy is the main reason in measuring efficiency of hospitals. In this study, a bootstrap interval data envelopment analysis (BIRDEA) is proposed for measuring the efficiency of hospitals affiliated with the Hamedan University of Medical Sciences. The propos...
متن کاملAsymptotic Distributions of Estimators of Eigenvalues and Eigenfunctions in Functional Data
Functional data analysis is a relatively new and rapidly growing area of statistics. This is partly due to technological advancements which have made it possible to generate new types of data that are in the form of curves. Because the data are functions, they lie in function spaces, which are of infinite dimension. To analyse functional data, one way, which is widely used, is to employ princip...
متن کاملOn the Detection of Trends in Time Series of Functional Data
A sequence of functions (curves) collected over time is called a functional time series. Functional time series analysis is one of the popular research areas in which statistics from such data are frequently observed. The main purpose of the functional time series is to predict and describe random mechanisms that resulted in generating the data. To do so, it is needed to decompose functional ti...
متن کاملFunctional-Coefficient Autoregressive Model and its Application for Prediction of the Iranian Heavy Crude Oil Price
Time series and their methods of analysis are important subjects in statistics. Most of time series have a linear behavior and can be modelled by linear ARIMA models. However, some of realized time series have a nonlinear behavior and for modelling them one needs nonlinear models. For this, many good parametric nonlinear models such as bilinear model, exponential autoregressive model, threshold...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2006